Entrepôts, Représentation et Ingénierie des Connaissances
Publications du laboratoire

Recherche approfondie

par Année
par Auteur
par Thème
par Type
--------------------
- Non-parametric clustering over user features and latent behavioral functions with dual-view mixture models doi link

Auteur(s): Lumbreras A.(Corresp.), Velcin J., Guégan Marie, Jouve B.

(Article) Publié: Computational Statistics, vol. p. (2016)


Ref HAL: hal-01341870_v1
DOI: 10.1007/s00180-016-0668-0
Résumé:

We present a dual-view mixture model to cluster users based on their features and latent behavioral functions. Every component of the mixture model represents a probability density over a feature view for observed user attributes and a behavior view for latent behavioral functions that are indirectly observed through user actions or behaviors. Our task is to infer the groups of users as well as their latent behavioral functions. We also propose a non-parametric version based on a Dirichlet Process to automatically infer the number of clusters. We test the properties and performance of the model on a synthetic dataset that represents the participation of users in the threads of an online forum. Experiments show that dual-view models outperform single-view ones when one of the views lacks information.