Entrepôts, Représentation et Ingénierie des Connaissances
Publications du laboratoire

Recherche approfondie

par Année
par Auteur
par Thème
par Type
- Hybrid Metaheuristics based on MOEA/D for 0/1 Multiobjective Knapsack Problems : A comparative Study doi link

Auteur(s): Kafafy A.(Corresp.), Bounekkar A., Bonnevay S.

Conference: IEEE Congress on Evolutionary Computation (Brisbane, AU, 2012-06-10)
Actes de conférence: IEEE Congress on Evolutionary Computation, vol. p.3616-3623 (2012)

DOI: 10.1109/CEC.2012.6253015

Hybrid Metaheuristics aim to incorporate and combine different metaheuristics with each other to enhance the search capabilities. It can improve both of intensification and diversification toward the preferred solutions and concentrates the search efforts to investigate the promising regions in the search space. In this paper, a comparative study was developed to study the effect of the hybridization of different metaheuristics within MOEA/D framework. We study four proposals of hybridization, the first proposal is to combine adaptive discrete differential evolution operator with MOEA/D. The second one is to combine the path-Relinking operator with MOEA/D. the third and the fourth proposals combine both of them in MOEA/D. The comparative study uses a set of MOKSP instances commonly used in the literature to investigate the hybridization effects as well as a set of quality assessment indicators. The experimental results indicate that the proposals are highly competitive for most test instances and can be considered as viable alternatives.